RAPID COMMUNICATIONS PHYSICAL REVIEW FLUIDS 1, 032402(R) (2016) Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations
نویسندگان
چکیده
The relationship between Koopman mode decomposition, resolvent mode decomposition, and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalized to permit combinations of such operations, in addition to translation in time. This invariance is related to the spectrum of a spatiotemporal Koopman operator, which has a traveling-wave interpretation. The relationship leads to a generalization of dynamic mode decomposition, in which symmetry operations are applied to restrict the dynamic modes to span a subspace subject to those symmetries. The resolvent is interpreted as the mapping between the Koopman modes of the Reynolds stress divergence and the velocity field. It is shown that the singular vectors of the resolvent (the resolvent modes) are the optimal basis in which to express the velocity field Koopman modes where the latter are not a priori known.
منابع مشابه
Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence.
We report that many exact invariant solutions of the Navier-Stokes equations for both pipe and channel flows are well represented by just a few modes of the model of McKeon and Sharma [J. Fluid Mech. 658, 336 (2010)]. This model provides modes that act as a basis to decompose the velocity field, ordered by their amplitude of response to forcing arising from the interaction between scales. The m...
متن کاملVariants of dynamic mode decomposition : boundary condition , Koopman , and Fourier analyses ∗ Kevin
Dynamic mode decomposition (DMD) is an Arnoldi-like method based on the Koopman operator. It analyzes empirical data, typically generated by nonlinear dynamics, and computes eigenvalues and eigenmodes of an approximate linear model. Without explicit knowledge of the dynamical operator, it extracts frequencies, growth rates, and spatial structures for each mode. We show that expansion in DMD mod...
متن کاملVariants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
Dynamic mode decomposition (DMD) is an Arnoldi-like method based on the Koopman operator that analyzes empirical data, typically generated by nonlinear dynamics, and computes eigenvalues and eigenmodes of an approximate linear model. Without explicit knowledge of the dynamical operator, it extracts frequencies, growth rates, and spatial structures for each mode. We show that expansion in DMD mo...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملOn the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis
We generate predictions for the fluctuating pressure field in turbulent pipe flow by reformulating the resolvent analysis of McKeon and Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) in terms of the so-called primitive variables. Under this analysis, the nonlinear convective terms in the Fourier-transformed Navier–Stokes equations (NSE) are treated as a forcing that is mapped to a velocit...
متن کامل